Impossible Objects Unveils Next-Generation 3D Printer, Partners with BASF to Bring Industry-First Composite to 3D Printing

The CBAM-2 3D printing system delivers complex parts at production speeds and volumes, while partnership with BASF makes strong, heat-tolerant PA6-carbon fiber composite parts printable at scale

Impossible Objects’ new 3D printer, the CBAM-2, delivers complex parts on an industrial scale — speeding up the additive manufacturing process as much as 10x.

May 21, 2019 08:00 AM Eastern Daylight Time

DETROIT–(BUSINESS WIRE)–At RAPID + TCT 2019, Impossible Objects announced two watershed advances in composite 3D printing for the factory floor. The company’s latest 3D printing system, the CBAM-2, and a new partnership with BASF on PA6-carbon fiber composites extend Impossible Objects’ patented composite based additive manufacturing process (CBAM) to an unprecedented range of industrial applications.

“It’s been exciting to see how our customers are putting our approach to work to create high-performance parts for everything from aircraft and cars to lightweight athletic gear,” said Impossible Objects Founder and Chairman Bob Swartz. “We’re continuing to bring machines, materials and expertise to the market to transform the entire manufacturing process, from prototyping through to high-volume production.”

The CBAM-2 Speeds Production of 3D Parts at Scale

The new CBAM-2 3D printing system, being shown at RAPID + TCT for the first time, delivers complex parts on an industrial scale — speeding up the additive manufacturing process as much as 10x. The CBAM-2 combines high-performance polymers with long-fiber carbon and fiberglass sheets to rapidly produce 3D composite parts that are stronger, lighter, with better temperature performance, and more durable than possible with conventional 3D printing methods.

Since Impossible Objects launched its flagship Model One 3D printer at RAPID 2017, a growing number of Fortune 500 companies have adopted it. Major automotive manufacturers including Ford Motor Company, manufacturing services company Jabil, the United States Air Force, and the National Institute for Aviation Research (NIAR) among others are using Impossible Objects technology.

Features of the CBAM-2 include:

  • Production speed: The machine can produce high volumes of production parts quickly — up to 10x faster than conventional 3D printing.
  • Support for high-strength composites: The CBAM-2 can print 3D parts from composites that are not available through any other 3D printing method. Combining carbon fiber and fiberglass with high-performance thermoplastics like PEEK and Nylon can produce parts with better strength-to-weight ratios than metals, along with superior temperature performance and chemical resistance.
  • Support for larger parts: Printed sheets can now reach up to 12 inches x 12 inches in size.
  • Increased precision: The CBAM-2 features three added cameras, ensuring greater quality control and guaranteeing each sheet is printed perfectly and each inkjet nozzle is fired seamlessly.
  • Streamlined maintenance: Automatic powder filling reduces fill-time to days, and bulk ink cartridges eliminate the need to refill ink frequently, allowing machines to run efficiently at a significantly greater duration.

CBAM-2 machines will be available for customers beginning in Q3.

BASF Partnership: An Unmatched Range of Material Choices and Capabilities

Impossible Objects also announced that through a collaboration with BASF, its Model One and CBAM-2 printers will support BASF’s Ultrasint PA6 (polyamide 6) powder, allowing customers to 3D print high-performance carbon fiber-PA6 composite parts for the first time.

Carbon fiber-PA6 composites offer better strength and temperature performance at a lower cost than PA12, and are up to four times stronger than conventional Fused Deposition Modeling (FDM) parts and twice as strong as Multi Jet Fusion (MJF) parts made with PA12.

“Our collaboration with Impossible Objects opens up new possibilities for customers, especially in the automotive and industrial sectors where we’re seeing strong demand for PA6. This partnership is in line with our philosophy of open innovation and support for open platforms. We’re encouraged by how Impossible Objects is using PA6 and are excited to work together to advance the state of additive manufacturing,” said Kara Noack, regional business director for BASF 3D Printing Solutions.

“We’re honored to be collaborating with BASF 3D Printing Solutions to make this economical workhorse polymer, which is used in an enormous number of industrial applications, available to our customers,” added Bob Swartz of Impossible Objects.

PA6 adds to Impossible Objects’ currently supported materials and will be available for shipment in Q3. For information on the collaboration, please see this video.

Customer Momentum: Manufacturing parts for legacy aircraft with UAMMI

The Utah Advanced Materials & Manufacturing Initiative (UAMMI) announced the successful creation of its first carbon fiber 3D printed part for the United States Air Force, made with an Impossible Objects printer.

The 3D printed part, a first aid kit restraint strap for B-1 aircraft at Tinker Air Force Base in Oklahoma, is the first step in UAMMI’s mission to replace broken parts on legacy aircraft, whose original parts are no longer in production. For more information, please see UAMMI’s accompanying release.

Impossible Objects Secures Additional Funding

To meet the demand for its products, Impossible Objects has raised $4.1 million in funding in a round led by returning investor OCA Ventures, bringing total funding to more than $13 million. The company raised $6.4 million in Series A funding in October 2017 from OCA Ventures, IDEA Fund Partners, Mason Avenue Investments, Huizenga Capital Management, and Inflection Equity Partners.

Resources:

  • Video about the CBAM manufacturing process.
  • Video about the BASF-Impossible Objects partnership.
  • Image of Impossible Objects CBAM-2.
  • Visit Impossible Objects at booth #403 at RAPID + TCT.

About Impossible Objects

Impossible Objects, a 3D printer and materials company, was founded with the belief that materials science inventions would enable 3D printing to revolutionize the world in the same ways that computers and the Internet have revolutionized the way we live, work and play. The company’s proprietary composite-based additive manufacturing (CBAM) technology produces parts up to 10 times faster than conventional 3D printing. By combining high-performance polymers like Nylon and PEEK with long-fiber carbon and fiberglass sheets, CBAM produces parts that are stronger, lighter, with better temperature performance, and more durable than possible with conventional 3D printing methods. For more information, visit www.impossible-objects.com.

Contacts

Molly Stein for Impossible Objects
molly.stein@archetype.co, 415-385-5137

Astarte Medical Secures $5 Million in Series A Financing to Advance its Technology for Improving Preterm Infant Outcomes

Company’s NICUtrition® suite of digital tools and diagnostics is designed to standardize feeding, optimize nutrition and quantify gut health in premature infants

NEWS PROVIDED BYAstarte Medical 

May 07, 2019, 08:31 ET

YARDLEY, Pa., May 7, 2019 /PRNewswire/ — Astarte Medical, the only precision medicine company using software and predictive analytics to improve premature infant outcomes, today announced it has secured $5 million in Series A financing. Investors in the round include Viking Global Investors LP, Lunsford Capital, OCA Ventures, Keiretsu Forum MidAtlantic, Keiretsu Capital Fund, Ben Franklin Technology Partners, Wing VC and Next Act Fund. The Company, which recently graduated from the Illumina Accelerator, will use the funds to complete the development of its NICUtrition® suite of digital tools and diagnostics, which support feeding protocols, practice and decision-making in the neonatal ICU (NICU). Duane Morris LLP, as legal council to Astarte Medical, advised the company on the transaction.

Every year, more than 380,000 babies are born prematurely in the United States. The first 1,000 days of life are a critical period for a baby’s growth and brain development – particularly for preterm infants – and maintaining a healthy gut is crucial during this time. The rapid changes in the microbiome during this period make it challenging for NICU teams to treat infants with a highly personalized level of care.

“This funding will bring us one step closer to completing our suite of solutions to support unmet needs in the NICU to drive better preterm infant outcomes such as improved growth and minimized risk of infection,” said Tracy Warren, CEO and Co-founder, Astarte Medical. “NICU feeding protocols are complex and often tracked manually, causing clinical care teams to spend unnecessary time on documentation. Our first product to market will automate and streamline feeding protocols, enabling doctors and nurses to spend more time with their patients and parents.”

Core to Astarte Medical’s platform is its comprehensive and proprietary dataset that integrates feeding protocols, microbial profiles and clinical information. Its NICUtrition® suite of products provides actionable information in real time to hospitals and clinical teams, enabling them to standardize care protocols, and customize treatment plans by quantifying preterm infant gut health.

“We are thrilled to support Astarte Medical as they develop cutting-edge technology to solve some of the biggest problems for the smallest patients,” said Bruce Lunsford, Chairman and CEO of Lunsford Capital. “With its first solution, the Company is poised to make a difference for not just the preterm babies, but also for clinical teams in NICUs where it will help streamline the workflow and increase efficiencies. Astarte Medical is addressing the needs of a large and underserved market, and we look forward to seeing the Company positively impact the industry, lowering healthcare costs and improving health for generations to come.”

Astarte Medical is comprised of a passionate management team and world-class advisors in neonatology, microbiome and predictive analytics. Company founders, Tracy Warren and Tammi Jantzen, have worked together for nearly twenty years as investors and serial entrepreneurs. Together, they are applying their expertise and business acumen to the vision of Katherine Gregory, PhD, RN, the company’s scientific co-founder. A NICU nurse by background, Dr. Gregory integrates her clinical experience with translational research, focused on preterm infant gut health and nutrition. She currently serves as Associate Chief Nursing Officer, Women’s and Newborn Health, Brigham and Women’s Hospital and Assistant Professor of Pediatrics, Harvard Medical School.       

Astarte Medical recently appointed Eric Heil and Stephen Hanson to its Board of Directors. Heil is an executive with extensive early stage, venture-backed entrepreneurial experience in healthcare, and currently teaches healthcare entrepreneurship at University of Pennsylvania’s Wharton School of Business. Hanson is an accomplished hospital leader who has optimized performance for five health systems and four independent hospitals in seven states. Together, they will bring strategic oversight to Asarte Medical’s roadmap of solutions to improve preterm infant outcomes.

About Astarte Medical 
Astarte Medical is the only precision medicine company using software and predictive analytics to improve outcomes during the first 1,000 days of life, with an initial focus on preterm infants. NICUtrition® by Astarte Medical supports feeding protocols, practice and decision-making in the neonatal ICU with a suite of digital tools and diagnostics designed to standardize feeding, optimize nutrition and quantify gut health. Learn more at www.AstarteMedical.com.

This project is supported by the Ben Franklin Technology Partners of Southeastern PA, an initiative of the Pennsylvania Department of Community and Economic Development funded by the Ben Franklin Technology Development Authority.

Media Contact
Alyson Kuritz
908-892-7149
Alyson@0to5.com